
Getting started
with Kubernetes
10-point checklist

2

Getting started with Kubernetes
10-point checklist

1. Have you automated your
 container builds and pushes?

Kubernetes requires that your image is fetched
from either a private or public container registry,
so if you haven‘t already automated your testing
and deployment pipeline, pushing your images
automatically after committing to your git repo
might be a good place to start! Chances are you’ve
already built and published an image to a registry,
so the commands you need to run will be familiar
and you can focus on finding the right tools for
automating your deployment workflow, starting
from the image push you can work backwards,
considering the build, application testing, code-
review and any other workflow steps that you may
need to implement.

2. How lightweight is your container?
 Have you cut out everything you
 don’t need?

Your applications container image is going
to get pulled by various systems throughout
your pipeline, it may be needed for testing, for
integration deployments, by a CI/CD system and by
other systems. To optimise both the time it takes to
start a new version of your application and the cost
of bandwidth you should aim to remove everything
from your container that you don’t need. This may
even mean using specifically container optimised
operating systems in your container to further
reduce the container size. In addition, reducing the
number of layers of your images will decrease the
sum of attack vectors, increasing the security. Thus,
we highly recommend making your containers as
light as possible, e.g by using multi-stage builds.

3. Have you written your Kubernetes
 configuration?

If you haven’t yet written your Kubernetes
manifests then you should consider the various
options for templating languages. If you have
experience using docker-compose you may
consider using Kompose to translate this file into

the Kubernetes configuration that you need, and
this can be a good starting point if you are just
beginning to work with Kubernetes. However, it’s
important to understand that your Kubernetes
configuration is a vital part of your application,
and should be treated as such, make sure you
understand every line.

Kubernetes uses a declarative configuration and
there are a number of templating languages to help
you generate the sets of files that you need, such
as Jsonnet.

You may even wish to investigate more complex
languages such as Cue, Pulumi or cdk8s, which
provide the opportunity to define configurations
in code and output in formats suitable for working
across different clouds, languages and tooling.

4. Have you packaged your
 configurations in a Helm chart?

Once you begin to look at how to deploy dependent
services that your application needs, even if just
for testing, you are almost bound to come across
Helm charts. A Helm chart is a collection of files
that describe a related set of Kubernetes resources,
which could be anything from a simple service
to a full-blown web application stack. As such
you’ll need to at least familiarise yourself with the
concepts behind them, but it’s probably a good idea
to make a helm chart for your application since it
simplifies the deployment of complex applications,
and Helm is ubiquitous in the container space.

5. Do you know your application’s
 performance profile?

To get the most out of Kubernetes you need to
understand how your application performs under
load, and what are usual and unusual performance
indicators. By knowing at least the CPU and RAM
profile of your application you will be able to
properly configure your resource requests and
limits. Configuring these properly helps to optimise
your cost but also helps for the self-healing of
your application. Without proper configuration,

3

your application might not restart if there is a
problem or alternatively enter CrashLoopBackOff if
Kubernetes sees normal application behaviour as
breaching your resource requirements. However, it
is highly unlikely that you will get the performance
profile right the first time. Therefore, it is suggested
to monitor the actual usage of your application and
constantly adjust the requested resources.

6. Have you considered how your
 application scales?

One of the most important and powerful aspects
of Kubernetes is to easily scale your containers
horizontally. Once you know the performance
profile of your containers, you should consider
using a HorizontalPodAutoscaler to scale your
application depending on the current traffic. Gone
are the days of fearing high traffic peaks. Instead,
let the Kubernetes cluster work for you.

7. Have you considered how your
 application responds to restarts?

Kubernetes is going to start, stop and restart your
containers all the time and that’s a feature, not
a bug! It will try to restart your application if it
thinks it is failing, or it will move your application
to a different node if some maintenance work is
being carried out, if you change your node pools,
or if you need to scale up/down, or many other
things. So you need to think about what happens
when your application restarts, and make sure
that it’s not doing things like running database
schema upgrades every time or performing any
other blocking actions which might impact the
ability of your customers to reach your application.
You’ll need to think about this for scaling too since
you’ll want instances to start and stop as quickly
as possible to get the most from the dynamic
capabilities of the Kubernetes scheduler.

8. Have you considered the
 availability of your application?

Physical or virtual machines fail and they will keep
failing. There is no way around it. However, you can
set up your containers to eliminate any single point
of failure, also known as high availability. There is

little point in running 10 replicas of your containers
on a single node if you have a multi-node cluster.
Therefore, you should spread your replicas across
as many nodes as possible and increase the
robustness and availability of your application.

9. Have you considered how your
 application responds to
 unavailable services?

You might want to think about your service stacks‘
general approach to service unavailability as well.
Unavailability is always going to be a possibility
regardless of the infrastructure, service provider
or architecture you choose, but it’s especially
important in cloud environments. So ensuring your
application is resilient in such scenarios, that you
remain accessible and don’t lose data, should be of
primary concern in your application development
phase.

10. Have you considered how to run
 the services your application
 depends on?

There is a lot to think about when running your
application in Kubernetes, and though it can bring
massive benefits when used properly it can be
somewhat overwhelming to deal with everything.
Regardless of whether you are new to Kubernetes
or not, it may be a good idea to partner with an
experienced third-party provider who can offer
auxiliary services of a guaranteed level of quality
to use with your application. If you are experienced
you might want to go directly to a cloud service
provider and simply consume their services, but
if you need more than this, such as direct contact
with engineers, additional services, solution
architecture support, or something else, engaging
with a service provider such as Nine, with years of
experience running both traditional and container
infrastructure could provide significant benefits.

Zurich, May 2022Nine Internet Solutions AG | info@nine.ch | www.nine.ch | +41 44 637 40 00

